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INTRODUCTION 

There are various classes of problems within 
the realm of statistical disclosure analysis and 
to each is associated a set of disclosure avoid- 
ance techniques. This paper is concerned with one 
specific disclosure avoidance technique, cell sup- 
pression, and the disclosure problems to which 
this technique applies. This limitation of scope 
does not, however, extend to the techniques we de- 
scribe for analysis of the network defining the 
tabulation cells, as these techniques admit ap- 
plication in a variety of settings in and out of 
statistical disclosure analysis. In particular, 
they may be employed to define a bottom -to -top 
tabulation system for the network. 

The suppression problem is discussed and 
solved here deterministically and completely with- 
in the context of the publication network, accord- 
ing to techniques and analyses developed by the 
author. This deterministic analysis is prerequi- 
site to any associated stochastic or extra -net- 
work analysis, in particular because it provides 
the proper context for such analyses. The empha- 
sis of this paper will be to highlight the rele- 
vant methodological problems posed in the appli- 
cation of suppression techniques in disclosure 
avoidance. Dut to limitations of space, it will 
not deal with the relevant issues and problems in 
the desigq and development of an automated system 
to effect these analyses and the practical experi- 
ence gained from the development of a disclosure 
analysis system for the 1977 Economic Censuses 
currently underway at the U.S. Bureau of the 
Census. 

The reader may refer to [2] for a discussion 
of other techniques of disclosure avoidance and 
to [1] for further explication of the terminology. 

THE SUPPRESSION PROBLEM 

To protect the confidentiality of the iden- 
tity or response of each respondent to a set of 
statistical publications, a test of sensitivity 
must be applied to each tabulated cell for each 
statistic to be published. This is accomplished 
according to an operant definition of sensitive 
cell for this statistic. In general, a cell is 

sensitive for a particular statistic if the value 
of the cell for this statistic could be employed 
to yield an unacceptably close upper estimate of 

the contribution of any one respondent to the 
total cell value.. An unacceptable estimate of 
this response would by definition breach the con- 

fidentiality of the respondent by effectively 

publishing its response or providing information 

which could lead directly to a determination of 
the respondent's identity. For example, when the 
data are categorical (qualitative), so that each 

respondent contributes 1 to the cell value if the 

respondent is a member of the cell and 0 otherwise 
a threshold rule defines a cell to be sensitive 
if the cell contains or fewer respondents, for n 

a fixed (small) positive integer. In applications 
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involving aggregate (quantitive) data, such as 
the U.S. Economic Censuses, a dominance rule de- 
fines a cell to be sensitive if n or fewer re- 
spondents in the cell contribute greater than k% 
of the total cell value, for fixed parameters n 
and k; n is a small positive integer and 0<k<-100. 
If respondent data are assumed positive, then 
threshold rules for quantitative data are domi- 
nance rules with k 100. 

According to suppression methodology, the 

values of sensitive cells are not published (i.e., 

are "suppressed from publication ") for the statis- 
tics for which they are sensitive. As linear re- 

lationships usually exist between tabulation 

cells in a publication network, upper and lower 
estimates of the values of the suppressed sensi- 
tive cells may be obtained by linear techniques 
and, in some instances, precise determination of 
the value of a sensitive cell may be made. As a 

result, a consistent definition of what consti- 
tutes an acceptable estimate of the value of a 
suppressed sensitive cell must be made in order 
that additional, appropriately chosen, linearly 
related non -sensitive cells, called complementary 
suppressions, may also be suppressed from publi- 
cation. These complementary suppressions are 
made to insure that only acceptable estimates of 

the values of sensitive cells may be obtained 
from the network. Equally important, the com- 

plementary suppression process must be performed 
so as to minimize its adverse impact on the in- 
formation content of the publications. 

Each of the above concepts must be made pre- 
cise to the extent that they may be measured in 
a predetermined and meaningful sense. These 

several issues will be dealt with in separate 
sections of this paper. Interrelationships be- 
tween them will be discussed at appropriate points. 

DEFINING ACCEPTABLE ESTIMATES OF SUPPRESSED 

SENSITIVE CELLS 

Assuming the respondent date are non -negative, 
if the value of a cell or union of cells contain- 
ing a particular individual respondent to a cell 
is known, then this value is an upper bound of the 
value of this respondent's datum. Similarily, 

zero is a lower bound on this value. In general, 
therefore, an interval estimate of the value of 
each individual response to each cell exists. 
Sensitivity rules are developed to identify those 

estimates of individual respondent data which are 
unacceptable according to established criteria. 
Acceptable estimates of sensitive cells therefore 
must be defined so that the estimates of the value 

of individual respondent data they provide conform 

to the corresponding estimates obtainable for re- 

spondent data from non -sensitive cells. Accept- 
able estimates must be determinable from the sen- 

sitivity rule and, ideally, one should be able to 
pass from formulae for acceptable upper and lower 
estimates of sensitive cells to a formula which 
describes the sensitivity rule. 



If cell sensitivity for categorical data is 
defined by a threshold rule, then it follows 

that an unacceptable lower estimate of the value 
of a suppressed sensitive cell should be defined 
as zero, and an unacceptable upper estimate of 
its value should be defined to be greater than 
the parameter n. This results :.from the fact that 
a- threshold rule is.applied to .categorical data 
to prevent any individual from being classified 
in a group of fewer than n +l respondents. 

To determine acceptable estimates of sup- 
pressed sensitive cells in a publication network 
of quantitative data, one must examine the avail- 
able methods of estimation of cell values from 
above and below and the corresponding estimates 
of individual respondent data which can be made 
for respondents in non -sensitive cells. In gen- 

eral, dominance criteria are employed because, 
if there is dominance of a cell X by a small num- 
ber n respondents, then it is possible for one 
of the dominating respondents to subtract its 
contribution from the total cell value V(X), 
thereby obtaining an undesirably close upper 
estimate of the total value of the responses of 
the other dominating respondents, and thereby a 
refined upper estimate of the contribution of 
each of these other (n -1) dominating respondents. 
Indeed, it is the value of D(X), the total con- 
tribution of the n largest respondents, which 
must in general be protected. If X is sensitive, 
V(X) is suppressed only because it represents an 
unacceptably close upper estimate of D(X). For 
cells X in which the total contribution D(X) of 
the n largest contributing respondents lies be- 
low the dominance threshold (i.e., D(X) < 
(k /100)V(X)), V(X) is by definition an acceptable 
upper estimate of the value of the response of 
any of the n dominating respondents. In parti- 
cular, this is true when D(X) (k /100)V(X), in 

which case publishing V(X) protects D(X) by 
((V(X)- D(X)) /D(X))% of its value, i.e., by 
((100- k) /k)% of the value of D(X). For sensi- 
tive cells, therefore, it is reasonable to de- 
fine an acceptable upper estimate of the value 
V(X) of a sensitive cell X to be greater than or 
equal to (100 /k)D(X), so that the dominant por- 
tion D(X) of the sensitive cell X will receive 
proportionately at least as much protection from 
above as does the corresponding D(Y) for a cell 
Y on the dominance threshold. 

Lower estimates of D(Y) or D(X) are obtaired 
in a much more complex manner. As D(X), con- 
sidered as a cell (although in general it is 

not a tabulation cell), is the aggregate response 
of n or fewer respondents, then D(X) and any sub - 
cell of D(X) is sensitive and thus suppressed. 
Therefore, lower estimates of D(X) are obtainable 
only through lower estimates of the correspond- 
ing V(X), in the following manner. If a lower 
estimate of n and an upper estimate t' of the 
number of respondents t to a non -sensitive and 
published cell Y are known, then one may con- 
clude D(Y)>_ (n' /t')V(Y). In many publications, 
t is published or may be straightforwardly in- 
ferred from published data regardless of whether 
V(Y) is published or not. As a result, analysis 
of the corresponding to published and sup- 
pressed cells would most certainly lead a serious 
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data analyst to a precise determination of the 
value of the parameter n. Therefore, under the 

assumption that n and t are precisely known, the 
relative equivocation from below afforded D(Y) by 
publishing V(Y) for a non -sensitive cell Y equals 
(D(Y) - (n /t)V(Y)) /D(Y). For Y on the sensiti- 
vity threshold D(Y)= (k /100)V(Y), this relative 
equivocation from below -equals 1 - (n /t) (100 /k). 

Remark. For published cells Y, other lower esti- 
mates of D(Y) may be obtained from V(Y). How- 
ever, under the mild restriction (k /100) >n /t (re- 
call that t > n +l for non -sensitive Y), the lower 
estimate D(Y)> (n /t)V(Y) was best possible among 
those considered. 

If X is sensitive so that V(X) is suppressed, 
then lower estimates L(D) of D(X) may be obtained 
from lower estimates L(X) of V(X) provided a 
lower estimate k' of k is known. As X is sensi- 
tive by assumption, then D(X)> (k /100)V(X) 
(k' /100)V(X). As L(X) is a lower estimate of 
V(X), then V(X) > L(X) and hence D(X) > 

(k' /100)L(X) = L(D). 

To provide at least the same relative equi- 
vocation from below to D(X) for sensitive X as 
to D(Y) for Y on the sensitivity threshold, we 
define an acceptable lower estimate of V(X) for a 
sensitive cell X to be any lower estimate which 
is less than or equal to 

0 t < n 

(n /t)(100 /k)2D(X), t > n 

Remark. It would be useful to determine upper 
and lower sensitivity measures S+ and S- for 
which S -(X) and S +(X) measure the amount of addi- 
tional suppression necessary to protect D(X) from 
above and below, respectively. Theoretical and 
practical considerations indicate the desirability 
of requiring these measures to be subadditive and 
superadditive, respectively, as the following in- 
equalities demonstrate. If X is sensitive and Y 
is a candidate cell for complementary suppres- 
sion, then the union XUY will be non -sensitive if 
S V(XUY); and a lower estimate L(XUY) of 
the union XUY will be acceptable if 

L(XUY)< S -(X) + S -(Y) s- (XUY). We may con- 
struct a subadditive function on the set of cells 
by assigning to each cell Y the minimum acceptable 
upper estimate of its corresponding D(Y) i.e., by 

defining S +(Y) _ (100 /k)D(Y). However, the cor- 
responding function which assigns to each cell Y 
the maximum acceptable lower estimate of its cor- 
responding D(Y) as determined above is not a sub - 
additive or superadditive function. In terms of 

defining a sensitivity measure in the sense of 
[4], it would be desirable to determine a super - 
additive minorant S (Y) of this function. 

THE PUBLICATION NETWORK AND LOGICAL TABLES 

By the term tabulation cell we shall mean 
any cell whose value for a particular statistic 
is either tabulated for publication or, although 
not explicitly tabulated, may be determined from 
the values of tabulated cells by linear techni- 
ques; and the term publication network shall 



denote the set of all tabulation cells together 
with thé collection of all linear relationships 
between them. A publication network is definable 
in terms of one or more independent parameters, 
such as membership in certain of several geo- 
graphic sets, industry groups or industry types. 

The publication network may be realized as 
a directed linear graph representing set- subset 
relationships between classes of tabulation 
cells. These set -subset relationships and the 
linear relationships between the tabulation cells 
mutually define each other. Each point on the 
directed graph corresponds to a class of tabula- 
tion cells and each directed line segment be- 
tween graph points (nodes, vertices) corresponds 
to a set of linear equations between the members 
of the corresponding classes of tabulation cells. 
For example, the four geographic parameters 
United States, State, County and City- within- 
County are related hierarchically, so that the 
graphical representation of an associated publi- 
cation network would consist of four points ar- 
ranged vertically in the order above, with 
directed line segments from the points corre- 
sponding to United States to Staté, State to 
County and County to City- within -County. As each 
graph point has at most one superior on the 
graph, then this network is one -dimensional. A 
two -dimensional network would result if these 
geographically defined cells weie further disag- 
gregated by another strictly hierarchical set of 
parameters. For example, if, as in the U.S. 

Census of Manufactures, the responding universe 
comprises all manufacturing establishments, each 
classified according to geographic location of 
place of business and industry type (by 6 -digit 
within 4 -digit within 3 -digit within 2 -digit 
Standard Industry Code), then the publication 
network would be two -dimensional. The corre- 

sponding directed graph would consist of the four 
points of the strictly geographic graph previ- 
ously mentioned, together with the sixteen pos- 
sible combinations of each of four geographic 
types with the four industry types, with corre- 
sponding directed line segments between these 20 
points. 

As the maximum number of directed segments 
terminating at any graph point in the preceding 

example equals two, the publication network is 
two -dimensional. For example, the graph point 

corresponding to County by 3 -digit industry type 

has precisely two directed segments terminating 

at it, one emanating from each of the graph 

points County by 2 -digit industry type and State 

by 3 -digit industry type. Each of these directed 

segments represents a class of linear equations, 

namely those equations between a specific county 
by a specific 2 -digit industry type and this 
county by the 3 -digit industry types which make 

up the given 2 -digit industry type, and those 
equations between the state containing the county 

by one of those 3 -digit industry types and all 

counties within this state by this particular 3- 
digit industry type. These two classes of linear 
equations may be brought together to form a class 
of two -dimensional statistical tables, each 
table of which displays the two -way disaggrega- 
tion of a particular state by a specific 2 -digit 
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industry type for a given statistic by means of 

the counties within the state and the 3 -digit 

industry types which make up the particular 2- 

digit industry type. This situation admits a 

straightforward generalization, subject to the 

following definition. A tabulation cell in a 
statistical table is an internal cell if it is not 

a marginal total or partial marginal total (i.e., 

cannot be disaggregated by subsets) in the table. 

General Observation.. Given a publication network 
and its associated directed graph, the tabulation 

cells and the linear relationships between these 

which define the publication network may be 
organized for each statistic into tables so that 

each tabulation cell appears as an internal cell 

in precisely one such table. Moreover, the dimen- 

sion of this table is less than or equal to the 

number of directed segments terminating at the 

graph point corresponding to the tabulation cell. 

One dimension of each of these tables represents 

the disaggregation of a tabulation cell corre- 

sponding to a superior graph point of the given 

interior graph point by the tabulation cells it 

comprises at the inferior graph point. For 

example, a state is broken down by its Counties 

or a particular 2 -digit industry group is broken 
down by its 3 -digit industry groups as in the 
previously mentioned example. These tables may 
be constructed inductively from the "top" (the 
maximal points) of the graph downwards, and 
shall be referred to as the logical tables of the 
publication network. This definition is motivated 
in part to distinguish the logical tables from 
other tabular displays of the data. The impor- 
tance of the logical tables become clear when the 

suppression problem is viewed globally, i.e., 

in the context of the entire publication network. 

An ideal global solution to the suppression 
problem in a publication network may be described 
as follows. Associate a variable to each sup- 
pressed tabulation cell in the publication network 

and associate to each unsuppressed tabulation cell 

its value. These variables and constants are 

substituted into the linear equations defining 
the publication network. The publication network 
is thus realized as a system of linear equations. 
Through application of linear programming tech- 

niques, best- possible upper and lower estimates of 

the values of suppressed sensitive cells and 

sensitive unions of suppressed cells are obtained 

to yield best -possible interval estimates of the 

values of these cells. (Sensitive unions of sup- 

pressed cells are formed under dominance criteria 

within a linear relationship between sensitive and 

nonsensitive cells may be derived in which the 
largest n respondents dominate. Since the linear 

equation corresponding to this cell union is 
derivable, then the value of the cell union is 

effectively published). If the interval esti- 

mate thus obtained for any suppressed sensitive 
cell is unacceptable, then, kccording to an 
established suppression methodology, additional 

cells are suppressed (i.e., additional variables 

are introduced into the system) until no unac- 

ceptable interval estimates of suppressed sensi- 
tive cells may be obtained within the network. 
This suppression methodology must also be 



sensitive to predetermined rankings of cells as 
candidates for complementary suppression, to his- 
torical precedent and to relevant policy to the 
extent that attention to these does not diminish 
the information content of the publications in 
disproportionate measure to their importance. 
Above all, this methodology should minimize over - 
suppression of cells so that as few cells of the 
smallest possible value be suppressed complemen- 
tarily in the network. 

Unfortunately, the computational enormity of 
the process just described renders this process 
virtually impossible to implement in all but the 
smallest and simplest (e.g. strictly hierarchical) 
poublication networks. To render the problem 
tractable in general (for example, in censuses or 
large surveys), the problem must be organized 
into a set of local problems for which valid 
local techniques can be developed, together with 
controls for maintaining consistency between these 
local analyses. The General Observation previ- 
ously stated provides this organization. 

As previously described, the network is 

organized into collections of logical tables 
for which each tabulation cell appears as an 
internal cell in precisely one logical table. 
Beginning with the logical tables formed at the 
maximal points on the directed graph and proceed- 
ing downwards through the graph (with respect to 
the partial ordering of the graph points imposed 
by the directed line segments), the logical 
tables are subjected to an intra -table disclosure 
analysis which performs complementary suppres- 
sions if necessary in each logical table until 
each incoming suppressed cell can only be ac- 
ceptably estimated within the logical table. 
(The algorithmics of such intra -table techniques 
will be discussed in the next section). As each 
logical table completes disclosure processing, 
best -possible interval estimates of all sup- 
pressed cells are computed and acceptable inter- 
val estimates of the value of each complementary 
suppression created within this logical table 
are defined in terms of the relationship between 
such estimates and interval estimates of the 
values of the suppressed sensitive cells in the 

logical table. The acceptable interval estimates 
of the complementary suppressions thus defined 
are passed to any subsequently processed logical 
table in which the complementary suppression 
appears as a marginal total. This is done to 
insure that only acceptable estimates made be 
made of suppressed sensitive cells within the 
network. As each tabulation cell appears as an 
internal cell precisely one logical table, this 
processing sequence can be completed in one 
pass (i.e., without "backtracking" to reprocess 
a particular table) if the operant sensitivity 
criterion and the defined acceptable estimates 
resulting make it possible to adequately protect 
any sensitive cell in a logical table by sup- 
pressing only internal cells in the table. In 
general, to control the disclosure analysis and 
suppression process theoretically and opera- 
tionally and to minimize over -suppression, it is 

advisable to adopt a suppression methodology 
which suppresses cells on the margins in logical 
tables only when no combination of suppressed 
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internal cells within the table will suffice to 
protect the table's sensitive cells. 

INTRA -TABLE COMPLEMENTARY SUPPRESSION 
METHODOLOGY 

The problem of intra -table disclosure advoid- 
ance and complementary suppression methodology 
in a publication network is to adequately protect 
all cells and unions of cells which have been 
designated as suppressed in a logical table 
through the process of complementary suppression, 
while minimizing the adverse impact of this pro- 
cess on the quality of the published data. It 
is therefore necessary that adequate upper and 
lower levels of protection for these suppressed 
cells and that the adequacy of individual unsup- 
pressed cells as complementary suppression candi- 
dates can be determined. Our major assumption 
is that the quality of the published data is 
adversely affected more by the suppression of a 
larger number of cells than by the suppression 
of fewer cells of perhaps larger aggregate 
value. This assumption is justified in a large 
publication network by the cascading effect of 
cell suppression, i.e., suppresisons at higher 
levels in the network force, in an unpredictable 
manner, more suppressions at lower levels in the 
network. Therefore, although in particular cases 
it may seem that the quality of the data is 
least affected by the suppression of many small 
cells in favor of suppressing a few large ones, 
the fact that each of these complementary sup- 
pressions must be protected at lower levels of the 
network and may force the suppression of large 
cells at lower levels indicates that suppressing 
fewer cells is the better strategy in general. 

This strategy may be mitigated by preassigning 
a Prefer (for suppression) or Disallow (from 
suppression) status to individual suppression 
candidates prior to the intra -table analysis. 
These assignments should be respected unless 

they serve to render the intra -table problem 
intractable, in which case they must be selec- 
tively relaxed or ignored. 

The objectives of study in intra -table comple- 
mentary disclosure analysis are unions and dif- 
ferences of suppressed cells for which the value 
of the cell union or difference is effectively 
published (i.e., can be obtained from the values 
of published cells by linear techniques). As 
each complementary suppression is performed in 
the table in turn, the set of unions and dif- 

ferences of suppressed cells is changed. When 
this set is such that the value of none of its 
members may be derived as an unacceptable upper or 
lower estimate of the value of a sensitive or 
other suppressed cell, the intra -table analysis 
and complementary suppression process is complete 
for this logical table. A suppression methodo- 
logy must be developed for which this sequence 
of complementary suppression terminates in a 
minimum or near - minimum number of complementary 
suppressions. This problem is significantly 
more difficult in three and higher dimensional 
logical tables than it is in one or two dimen- 
sions. Although operational programs based upon 
heuristic algorithms are being developed to 



complementary suppression in three and higher 
dimensional tables, the subsequent discussion 
will be limited to the two dimensional case (of 
which the one dimensional case is a particular 
application). This limitation does not, however, 
apply to the techniques of linear estimation 
employed, which easily generalize to higher 
dimensional problems. 

Although upper estimates of suppressed cells 
in a two -dimensional logical table can be ob- 
tained from the linear equations corresponding 
to the row and column containing the suppressed 
cell (i.e., the cell is estimated from above 
by the difference between the row or column 
marginal total, if it is published, and the sum 
of all published cells on the row or column), it 
is the set of all linear combinations of these 
line estimates which comprise all linear esti- 
mates of the value of the suppressed cells 
obtainable from the logical table. By means of 
these linear combinations, better upper estimates 
and nontrivial (i.e., positive) lower estimates 
of the values of suppressed internal cells in a 
logical table may be obtained. Techniques for 
obtaining such estimates are described in [1]. 
The problem of obtaining best -possible upper and 
lower estimates of cells in a logical table may 
be posed as a generalized transportation problem 
as studied in the field of operations research. 

In the classical transportation problem, 
there are supply points each with fixed supply 
and demand points each with fixed demand. There 
is a transportation cost per unit delivered as- 
sociated with each supply point -demand point 
association. Assuming total supply equals total 
demand, the transportation problem is to assign 
supply to demand so that the total transporta- 
tion cost (the cost function) is minimized. The 
problem is represented by a (p x 1)x (q x 1) 
array. The i -th row of this array corresponds 
to the i -th demand point, 1 <i<p, the j -th column 
of the array corresponds to the j -th supply 
point, 1 <j <q, the entry in position (i.j) is 

a variable xij representing the amount supplied 
by the j -th supply point to the i -th demand 
point, while the entries (i, q + 1) and (p + 1, 
j) are, respectively, the total demand at the 
i -th demand point and the total supply at the 
j -th supply point, <i p and 1 <j <q. The entry 
(p + 1, q + 1) equals the common value of total 
supply and total demand. The reader is referred 
to [3] for a discussion of various classes of 
transportation problems and their solutions. 
In the disclosure application, each published 
cell in the logical table is replaced by its 
value. Unlike the classical transportation 
problem, some of the row and column marginal 
totals may be variables. The costs associated 
with each variable in the cost equation are 
taken from the discrete set {- 1, 0, 1 }, so that, 

for example, if we seek to determine the minimum 
value (i.e., the best lower estimate) of the 
cell in the (1, 1) position, we minimize the cost 
function x11. If we seek the maximum value of 
this cell i.e., its best upper estimate), we 
find the minimum value of the cost function 
-x11, and take its negative. Optimal estimates 
of cell unions and differences may be obtained 
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by minimizing or maximizing the analagous linear 

relationships between their corresponding vari- 

ables. Standard transportation problem tech- 
niques may be employed to determine these 
minima and maxima. The significant computational 
difference between this application and the 
classical transportation problem is that several 

iterations of the techniques may be necessary in 
the disclosure application before a feasible 
solution to the problem is reached (see [3]). 

In [1], the author describes techniques for 
determining interval estimates of the values of 

suppressed cells in a logical table using an 
algorithm tailored to the disclosure problem. 
This algorithm begins with a line estimate of 

a particular cell or cell union and system- 
atically generates cell unions and differences 
related to this cell, comparing the upper and 
lower estimates of the cell value thus obtained 
with previously obtained estimates. The 
algorithm operates quite efficiently and has 
never failed to obtain best -possible estimates. 
It remains to prove that this algorithm always 
generates best -possible interval estimates of 

the values of suppressed cells in a logical 

table (e.g., that this algorithm is equivalent to 
existing transportation algorithms). This is 

under investigation. 

Although methods for determining best - 
possible interval estimates have been established, 
an area of research which remains open is that of 
determining a minimal set of complementary sup- 
pressions given a set of specified suppressions 
and their acceptable upper and lower estimates. 
An exhaustive examination of the alternative com- 
plementary suppression patterns is out of the 

question in all but the smallest logical tables; 

and no acceptable branch and bound procedure_has 

yet been devised, although these remain under 

investigation. A geometric approach to the prob- 
lem is indicated to provide guidance and control 

in the choice of complementary suppressions. 

Geometrically, we may view the disclosure problem 

as represented by a 0 - 1 matrix in which the 
position corresponding to a suppressed cell or a 

cell disallowed as a complementary suppression 

candidate contains a 0 and those corresponding to 

candidates for suppression contain a 1. For the 

moment ignoring the cell values and assuming that 

any one candidate for complementary suppression 

in a row or column will suffice to protect that 

row or column (i.e., the union of this cell with 

all suppressed cells on the row or column is non - 

sensitive), then a partial geometric solution of 

the suppression problem is provided by the 

following theorem. 

Theorem. Let R and C denote the number of rows 
and columns, respectively, in a logical table 

which require additional suppression (the un- 
protected rows and columns). Assume that one 
additional suppression in an unprotected row or 
column will suffice to protect this row or 
column. If R =C =1, then at most three additional 
suppressions are necessary in the logical table 
to protect all rows and columns. Otherwise, Max 
(R,C) additional suppressions suffice. Assume 
for definiteness that R =Max (R,C). Then the 



first C of these complementary suppressions 
must be chosen so that one is in each of the C 

unprotected columns and each is in a different 
row. The remaining complementary suppres- 

sions are chosen with one in each of the re- 

maining unprotected rows and each may be chosen 

in any column, provided that, if one is chosen 

in a column not containing any suppressions, 

then at least one other is chosen in the same 
column. 

It results that the number of such solutions 

grows like the factorial of Max (R,C), so that 

many alternative suppression patterns exist. 
This theorem, when applied in conjunction with 
specified Prefer and Disallow suppression 
options and branch and bound techniques has 

proven effective in determining optimal or near - 
optimal suppression patterns which protect cells 

in their rows and columns in real disclosure 
settings (i.e., where one complementary sup- 
pression on a row or column may not suffice to 

protect the row or column, and where n respond- 

ent dominance in cell unions is a factor). If, 

after the Theorem has been applied, improved 
estimates of suppressed cells are obtained 
through linear combinations of row and column 
equations (i.e., from cell unions or differences 
which are formed through linear combinations of 

rows and columns), the suppression pattern gen- 
erated by application of the Theorem is appro- 
priately augmented. A generalization of the 
Theorem which identifies all single variable 
linear equations obtainable from a given sup- 
pression pattern and the corresponding set of 

covering suppressions is under investigation. 

THE SYSTEM AS IMPLEMENTED 

An automated system to perform disclosure 

analysis and complementary suppression for the 
1977 Economic Censuses of Manufactures, Construc- 
tion Industries and Wholesale and Retail Trade 
is currently completing development at the U.S. 
Bureau of the Census. This system is written in 
Fortran and its initial implementation will be 
on Univac 1100- series computers. The system 
applies the methodology described in this paper, 
with the following important exception. 

There are four parameters employed to define 
the statistical cells in these publications, of 

which as many as three may be cross -tabulated to 
define a particular tabulation cell. These 
parameters are Geography, Standard Industry Code, 
Sales Type and Type of Establishment. The 
latter three of these are strictly hierarchical 
(i.e., one -dimensional), but the geographic 
parameter, owing to overlapping geographic 
regions, is two -dimensional. As almost all 

statistics are cross -tabulated by Geography, 
this implies that almost all logical tables will 
be at least three -dimensional. As no three or 
higher dimensional analog of the Theorem cited 
in the preceding section exists, it was decided 
to develop a methodologically sound two - 
dimensional complementary suppression computer 
program and to process only two -dimensional 
logical tables. This procedure is feasible in 
three -dimensional publication networks for which 
Geography is a defining parameter because data 
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for overlapping portions of geographic regions 
are not published. Therefore, the corresponding 
cells may be employed as available suppressions, 
so that problems in the third dimension may be 
made to occur infrequently, and the constituent 
two -dimensional tables may be processed separately. 
When problems in the third dimension do occur, the 
processing order is backtracked in a well -defined 
manner. 

The only four -dimensional tables constructed 
are those of Geography by SIC by Sales Type. 
Owing to the backtrack technique previously 
described, these four -dimensional tables can be 
regarded as sets of three -dimensional tables of 
one geographic dimension by SIC by Sales Type. 
To process these three -dimensional tables, each 
three -dimensional table will be partitioned into 
a collection of two -dimensional tables, one for 
each Sales Type. These will be processed sep- 
arately by the two -dimensional suppression pro- 
gram. At various stages in this analysis, the 
collection of two -dimensional tables comprised 
by the original three -dimensional table will 
undergo a three -dimensional disclosure analysis 
reconciliation. 

BIBLIOGRAPHY 

[1] Cox, L., Statistical Disclosure in Publica- 
tion Hierarchies, 1976 Proceedings of the 
Statistical Computing Section - American 
Statistical Association, pp. 130 -136. 

[2] Interim Report on Statistical Disclosure and 
Disclosure- Avoidance Techniques, Sub- 
committee on Disclosure- Avoidance Techniques,. 
Federal Committee on Statistical Methodology, 
Statistical Policy Division, Office of 
Management and Budget, 1977. (unpublished) 

[3] Dantzig, G., Linear Programming and Ex- 
tensions, Princeton University Press, 
Princeton, 1963. 

[4] Sande, G., Towards Automated Disclosure 
Analysis for Enterprise Based Statistics, 
Statistics Canada, 1977. (unpublished) 


